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INSTRUCTIONS  
• Use black ink. HB pencil may be used for graphs and diagrams only. 
• Complete the boxes provided on the Printed Answer Booklet with your name, centre number 

and candidate number. 
• Answer all the questions. 
• Write your answer to each question in the space provided in the Printed Answer 

Booklet. 
• Additional paper may be used if necessary but you must clearly show your candidate 

number, centre number and question number(s). 
• Do not write in the bar codes. 
• You are permitted to use a scientific or graphical calculator in this paper. 
• Final answers should be given to a degree of accuracy appropriate to the context. 
 
INFORMATION 
• The total number of marks for this paper is 144. 
• The marks for each question are shown in brackets [  ]. 
• You are advised that an answer may receive no marks unless you show sufficient detail of the 

working to indicate that a correct method is used. You should communicate your method with 
correct reasoning. 

• The Printed Answer Booklet consists of 24 pages. The Question Paper consists of 8 pages. 
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Section A (33 marks) 

 
Answer all the questions. 

 

1  Find the acute angle between the lines with vector equations 

3 1

0 2

2 1


   
       
       

r  and 

1 3

5 1

3 2


   
       
      

r . [3] 

 

2   (i)  On an Argand diagram draw the locus of points which satisfy  arg 4i .
4

z
   [2] 

 

  (ii)  Give, in complex form, the equation of the circle which has centre at 6 4i  and touches the locus in 
part (i). [4] 
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3  Transformation M  is represented by matrix 
2 3

.
1 4

 
  

 
M   

   (i)  On the diagram in the Printed Answer Booklet draw the image of the unit square under M . [2] 
 

  (ii)  (A)  Show that there is a constant k such that 5
x x

kx kx

   
   

   
M  for all x.  [2] 

 

 (B) Hence find the equation of an invariant line under M . [1] 
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4 You are given that 1 2iz    is a root of the equation 3 25 15 0z z qz    ,  where .q   

 
 Find  

 the other roots,  

 the value of q . [5] 

5  (i) Express 2

( 1)( 3)r r 
 in partial fractions.  [2] 

 (C)  Draw the invariant line from part (ii) (B) on your diagram for part (i). [1] 
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    (ii) Hence find  
1

1
,

( 1)( 3)

n

r r r    expressing your answer as a single fraction.  [5] 

 
6  (i) A curve is in the first quadrant. It has parametric equations cosh sinh ,x t t   cosh sinhy t t  where 

t  . Show that the cartesian equation of the curve is 1.xy  [2] 
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 Fig. 6 shows the curve from part (i). P is a point on the curve. O is the origin. Point A lies on the x-axis, 

point B lies on the y-axis and OAPB is a rectangle. 
 

 
Fig. 6 

 
  (ii)  Find the smallest possible value of the perimeter of rectangle OAPB. Justify your answer. [4] 
 
  

y 

x 
O 

B P 

A 
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Section B (111 marks) 

 
Answer all the questions 

 

7   (i)  Use the Maclaurin series for ln(1 )x  up to the term in 3x  to obtain an approximation to ln1.5.   [2] 

 

  (ii)  (A)  Find the error in the approximation in part (i).  [1] 
  

 (B) Explain why the Maclaurin series in part (i), with 2,x   should not be used to find an 

approximation to ln 3.  [1]  
 

 (iii)  Find a cubic approximation to 
1

ln
1

x

x

 
  

.  [2] 

 

 (iv)  (A) Use the approximation in part (iii) to find approximations to  
 ln 1.5 and  
 ln 3.  [3] 
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8  Find the cartesian equation of the plane which contains the three points (1, 0, 1) , (2, 2, 1) and (1, 1, 2).  

    [5] 
 

 
 
 

   (B) Comment on your answers to part (iv) (A).  [2] 
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9 A curve has polar equation sin 3r a   for 1 1
3 3     , where a is a positive constant. 

 
   (i)  Sketch the curve. [2] 
 

    (ii)  In this question you must show detailed reasoning. 
  
  Find, in terms of a and ,  the area enclosed by one of the loops of the curve. [5] 

 

 

PhysicsAndMathsTutor.com



 
10   (i)   Obtain the solution to the differential equation 
 

d 1
3

d

y
x y

x x
   , where 0x   , 

 

   given that 1y   when 1x  . [7] 

 

  (ii)  Deduce that y decreases as x increases. [2] 
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11   (i)  It is conjectured that 
 

1 2 3 1
...

2! 3! 4! ! !

n b
a

n n


      , 

 

   where a and b are constants, and n is an integer such that 2.n   
 
   By considering particular cases, show that if the conjecture is correct then 1a b  . [2] 
 

  (ii)  Use induction to prove that 
 

                                                         
1 2 3 1 1

... 1
2! 3! 4! ! !

n

n n


       for 2n  . [7] 
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12   In this question you must show detailed reasoning.   

  (i) Given that arctany x , show that 2

d 1

d 1

y

x x



. [3] 

 

  Fig. 12 shows the curve 2

1

1
y

x



. 

 
Fig. 12 

 

   (ii)  Find, in exact form, the mean value of the function 2

1
f( )

1
x

x



 for 1 1x   . [3] 

 

 
 

y 

x 
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 (iii)  The region bounded by the curve, the x-axis, and the lines 1x   and 1x    is rotated through  
2 radians about the x-axis. Find, in exact form, the volume of the solid of revolution generated. [7] 
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13  Matrix M  is given by 

1 5

2 3 3

1 2 2

k  
   
  

M , where k is a constant. 

  
   (i)  Show that det 12( 3)k M .  [2] 

 

 (ii)   Find a solution of the following simultaneous equations for which .x z  
 

2 2 2

2 2 2

2 2 2

4 5 6

2 3 3 6

2 2 6

x y z

x y z

x y z

  

  

    

 

      [3] 
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 (iii)  (A)  Verify that the point (2, 0, 1) lies on each of the following three planes. 
 

3 5 1

2 3 3 1

2 2 0

x y z

x y z

x y z

  
  

   
 

     [1] 

 
  (B)  Describe how the three planes in part (iii) (A) are arranged in 3-D space. Give reasons for your 

answer.  [4] 
 

  (iv)  Find the values of k for which the transformation represented by M  has a volume scale factor of 6.  
      [3] 

 

 

 
 

 
 

 
 

 
14   (i)  Starting with the result 

 
ie cos i sin    , 

 

 show that 
 

  (A)   cos i sin cos i sin
n

n n        [2] 

 

  (B)   i i1
cos e e

2
    .  [2] 
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    (ii)  Using the result in part (i) (A), obtain the values of the constants a, b, c and d in the identity 
 

                                                   6 4 2cos6 cos cos cosa b c d       .  [6] 

 

   (iii)  Using the result in part (i) (B), obtain the values of the constants P, Q, R and S in the identity 
 

                                                  6cos cos6 cos 4 cos 2P Q R S       . [5] 
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15  In this question you must show detailed reasoning.  
  
  Show that  

                                                    

2
3

0

2 1
arsinh 2 d ln 3

3 3
x x  


. [8] 

  

   (iv)  Show that 

1

626 15 3
cos

12 64
  

   
 

.  [3] 
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16  A small object is attached to a spring and performs oscillations in a vertical line. The displacement of the 

object at time t seconds is denoted by x cm. 
 

  Preliminary observations suggest that the object performs simple harmonic motion (SHM) with a period of 
2 seconds about the point at which 0x  . 

 
   (i)  (A) Write down a differential equation to model this motion.  [3] 
 

   (B) Give the general solution of the differential equation in part (i) (A).  [1] 
 

 Subsequent observations indicate that the object’s motion would be better modelled by the differential 
equation  

           
2

2
2

d d
2 9 0

d d

x x
k k x

t t
           (*) 

 
  where k is a positive constant. 
 
  (ii)  (A)  Obtain the general solution of (*). [3] 

 (B) State two ways in which the motion given by this model differs from that in part (i). [2] 
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 The amplitude of the object’s motion is observed to reduce with a scale factor of 0.98 from one oscillation 
to the next. 

  
 (iii)  Find the value of k. [3] 

 

  At the start of the object’s motion, 0x   and the velocity is 12 cm s–1 in the positive x direction. 
 
 (iv)  Find an equation for x as a function of t. [4] 

  (v)  Without doing any further calculations, explain why, according to this model, the greatest distance of 
the object from its starting point in the subsequent motion will be slightly less than 4 cm. [2] 
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